
Mathematical Formulation of the Maximum Ordinality Principle 
 
 
As already anticipated, the Maximum Ordinality Principle asserts that: 

 

“Every System tends to Maximize its own Ordinality, 

including that of the surrounding habitat”. 

 

Such a verbal enunciation can correspondently be expressed in formal terms by means of three intimately 

correlated basic equations:  

 

i) The first equation, which formally expresses the general tendency toward the Maximum Ordinality, can be 

formulated as follows: 
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where:  is the symbol of the “incipient” derivative;  is the Ordinality of the System, which 

represents the Structural Organization of the same in terms of Co-Productions, Inter-Actions, Feed-Backs; while 

 is the proper Space of the System (see also Eq. (3)). 
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The symbol  in Eq. (1) has to be understood as follows: when a Self-organizing System, 

persistently propending toward the Maximum Ordinality conditions, effectively reaches such very special 

conditions, it presents itself as being self-structured in a radically different way with respect to its initial 

Ordinality. This is because the latter has evolved according to the following Trans-formation 
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where: represents a “binary-duet” coupling; the Ordinal power indicates the “perfect specularity” 

of the previous “binary-duet” structure; while indicates the Ordinal Over-structure of the elements of 

the System considered as a Whole (this is the reason for the “tilde” notation); 
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ii) The second equation, which is intimately related to the previous one, expresses an internal Harmony 

Condition to the System (or, alternatively, the internal Ordinal “Stability” of the System), for each level of 

Ordinality achieved.  

For the sake of simplicity and clarity the latter is formulated with reference to any single couple of elements, 

when structured in a “binary-duet” relationship: 
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This equation asserts that the proper Space of the System (at present considered as being made up of two sole 

elements) is coupled with its specific Generativity in such a way as to originate a comprehensive Generative 

Capacity which is always in equilibrium.1  

This is also the equation which represents a fundamental condition for the intrinsic Ordinal Stability of the 

System as a Whole and also generates the afore-mentioned “perfect specularity” of the System (understood as  

internal Harmony Relationships). A perfect specularity which, in the case of two sole elements, is represented by 

the Ordinal structure , while in the case of  elements is represented by the right hand side of 

Eq. (1’); 

}}2{}2/2{{ ↑↑
∼∼∼ ∼

N

 

iii) finally, the third equation, which defines the fundamental Reference Space (of the System):  
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where the coordinates  are understood as being the exit of a Generative Process (this is the reason for 

the tilde notation);  the symbols ⊕  and ® express more intimate relationships between the same coordinates: 

both in terms of sum ( ) and in terms of (relational) product (®) with respect to the traditional versors 

, , ; the symbol “ ” , usually replaced by “
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= =” only for the sake of simplicity, indicates an “assignation” 

condition. This is because the second hand of Eq. (3) is understood as one sole entity, thus representing 

“something more” than the “sum” of its component (this is also the reason for the brackets). Consequently, 

definition (3) represents, in reality, an Over-definition. 

For practical purposes, however, it is more useful to adopt an equivalent representation, which is obtainable 

from a generalized version of Moivre’s formula 
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where the coordinates  are still considered as being the exit of a Generative Process, whereas the 

traditional versors , ,  are now replaced by three unit spinors  (see mathematical Appendix). 
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Representation (3’) is very similar (albeit not strictly equivalent) to a system of three complex numbers, 

characterized by one real unit  and two imaginary units ( and ). This can easily be recognized by simply 

considering the specific properties of these spinors given in Appendix. 
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Under these conditions, the solution to Eq. (1) (together with associated Eqs. (2) and (3’)) can be expressed in the 

form of the following exponential Ordinal Matrix  
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1 The symbol   represents a more general form of “vector” product. However, at this stage of formulation, it can be   
considered as being perfectly equivalent to the traditional vector product. 
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in which any element  is characterized by the Ordinality . ij
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The procedure that leads to this solution is given in Appendix, where it is also shown how the search for such a 

solution is extremely facilitated not only by the structure of Eqs. (1) and (2), but also (and especially) by the 

conception of the basic reference space represented by Eq. (3’). }{
∼
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The Ordinal Matrix (4) reflects the fact that the Relationships between the different parts of the System cannot 

be reduced to mere “functional” relationships between the corresponding cardinal quantities. This is because 

such quantities always “vehicle” something else, which leads us to term those relationships as “Ordinal” 

relationships. The term “Ordinal” thus explicitly reminds us that each part of the System is related to the others 

essentially because, prior to any other aspect, it is related to the Whole or, even better, it is “ordered” to the 

Whole. This is also the reason why the most important terms, when understood in such an Ordinal sense, are 

usually capitalized to expressly point out such a fundamental concept. 

In such a perspective, each element of the Ordinal Matrix can be interpreted as being Inter-Acting (in Ordinal 

terms) with all the other elements of the System. In addition, the adoption of an internal reference system reveals 

that the afore-mentioned perfect specularity is a property which also characterizes the Ordinal Matrix as a 

Whole. This is also the reason why the elements    satisfy the following specularity conditions ij

∼

α

 

                    (5), }}2{}2/2{{}}2{}2/2{{ )}({)}({ ↑↑
∼

↑↑
∼ ∼∼∼∼∼∼

= tt jiij αα

which represent something more than the traditional symmetry  . )()( tt jiij
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The adoption of an internal reference system, on the other hand, is an assumption which is strictly conform to 

the Holistic Approach (always subjacent to the Maximum Ordinality Principle). Such an assumption leads to 

recognize that  (for i =1, 2,...N), that is the main diagonal reduces to a sequence of zeros.  0=iiα
∼
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where the “little circle” represents the first order incipient derivative. Such a specific notation was evidently 

chosen (and consequently adopted) in analogy to classical Newton’s “dot” notation, usually used to indicate a 

first-order traditional derivative.  



As a consequence, the Ordinal matrix (4) becomes                                                                                                                                  
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Such a formal structure also allows us to assert that it is possible to choose, as a preferential reference 

perspective, any couple of elements of the Ordinal System, in order to give an equivalent representation of the 

same. Such a preferential choice introduces a further simplification, due to the fact that any preferential 

description adopted is “perfectly specular” to any other perspective specifically associated to each one of the 

remaining  elements of the System. This evidently means that the description reduces to 

 distinct elements, which are coupled together in the form of “binary-duet” structures.  

1−N
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Under particular conditions, however, all these distinct basic elements can also be so strictly related to each other 

(in Ordinal terms) that the description can equivalently be given by means of one sole element (assumed as a 

preferential reference perspective) and only )1( −N  correlating factors . ij

∼

λ

Clearly, all these properties are exclusively related to the concept of Ordinal Matrix. These intrinsic properties, 

in fact, express a much more profound concept of “symmetry” (with respect to the traditional one), which, as 

already anticipated, can more appropriately be termed as “specularity”. That very aspect which offers such 

relevant advantages when developing a computer code based on an Ordinal Model.  

 

 

Appendix: mathematical procedure which leads to explicit solution (4) 

 

 

The simplest (and most significant) way of presenting the formal procedure according to which Solution (4) can 

easily be obtained is that of adopting the following “convention”: the three variables  will 

initially be represented without either the symbol of Ordinality (the “tilde” notation) or the “cardinal” time 

dependence “ ”. Consequently, they will simply be represented as 
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)(t θϕρ ,, . In this way it will be possible to 

show how these variables progressively “emerge” from the System of Eqs. (1), (2), (3’), with their pertinent 

Ordinality and associated time-dependent cardinality. 

This approach is thus mainly finalized to show that the Solution to the System made up of the three 

Fundamental Equations (1), (2), (3’) is not a “cogent” and “necessary” consequence of the same, but is an 

“emerging” Solution. That is a Solution pertaining to a Generative Process, and thus characterized by a 

progressively Ascendant Ordinality and increasing Harmony.  

 

 

The explicit Solution (4) is then obtained through the following subsequent passages:  

 

i) by introducing the definition of the fundamental Relation Space (3’) in the First and Second Basic Equations 

(1) and (2) , the first one, after some simplifications, becomes 
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whereas Eq. (2) becomes    
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In both equations the symbol “ ” represents the specular concept of the Ordinal “composition” (as a Whole) 

previously indicated by “ ” in Eqs. (3’), (6), (6’). 
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For the sake of clarity such equations are initially written in the simple form . This is because 

the Ordinality which appears in Eq. (2) allows us to consider the Over-Ordinality  in a second phase of the 

solution process; 
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ii) Equation (A1) is evidently obtained by considering the specific properties of the spinors previously mentioned. 

These properties are simply listed here below because they precisely represent the explicit consequence of their 

being spinors:  
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Such properties are also particularly apt to illustrate the afore-mentioned concept according to which  

are very similar (albeit not strictly equivalent) to a system of three complex numbers, characterized by one real 

unit  and two imaginary units ( and ) (Giannantoni, 2007, ch. 6); 
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iii) Equation (A2), in turn, is obtained by considering that the “vector” product “⊗ ” is now referred to the three 

“spinors” previously defined, and thus characterized by the properties given by Eqs. (A3.1), (A3.2), (A3.3); 

 

iv) The solution to Eq. (A1) can then be obtained by considering  as a function of 2ρ ϕ  and ϑ . In this way, the 

associated characteristic equation gives origin to a solution of Ordinality , that is (Giannantoni, 2008a, 

ch. 22) 
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Consequently, the general solution to Eq. (A1) can synthetically be structured as follows, in terms of ϕ  and θ  

(and the initial value ) 2
0ρ
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where the variable  bigins to “emerge” with a preliminary form of its own Ordinality. This is because the latter 

is that same Ordinality which is still pertaining to the present state of a progressively “emerging” solution; 
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v) Afterwards, by adopting the following assignation relationship  
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obtained through the introduction of the correlating factor χ  (whose Ordinality and cardinality will emerge 

later on from the same solution process), Eq. (A.6) becomes  
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In fact, as a consequence of condition (A.7), the Ordinal Matrix )( ijM α that appears in Eq. (A.8) will contain 

only those terms ijα  which depend on ϕ . The latter, in turn, is already thought of in terms of its future time-

dependent cardinality. This is why the Ordinal Matrix )( ijM α , for the sake of clarity, from now on will be 

renamed as )( ijM α∗ ; 

 

vi) By introducing such an expression into Eq. (A.2), and by taking into account assignation condition (A.7)), Eq. 

(A.2) becomes 

 

         
∼∼∼

∼

∼
2)2/2()(

td

d
ϕ ϕϕ )2/2()2/2( )()()(

∼∼∼∼

∼

∼

∗ ®®⊕
td

dM
o

0=                             (A.9), 

 



which can also more explicitly be re-written as follows 
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This is exactly that equation from which the variable ϕ  will “emerge” as  that is with its proper Ordinality 

and its explicit associated time-dependent cardinality.  
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Equation (A.10) in fact can easily be solved by setting 
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In such a way Eq. (A.10) transforms into the following simpler equation 
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which has the same form as Riccati’s Equation, although written in terms of  “incipient derivatives” and Ordinal 

terms in the unknown variable Φ .   

Riccati’s Equation, written in such a form, always has an explicit solution (Giannantoni, 2007, ch. 2). This is 

because traditional linear and non-linear differential equations, when reinterpreted in terms of incipient 

derivatives, always have explicit solutions (ib., ch. 3); 

  

vii) Eq. (A.12) gives origin to the explicit solution . This can be seen as an “emerging” solution, because it is  

now characterized by its proper Ordinality and explicit associated time-dependent cardinality.  
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As a consequence, the corresponding “emerging” solution to Eq. (A.11) can easily be obtained by replacing the 

auxiliary variable  by means of the obtained “emerging” solution ; Φ )(t
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viii) Analogously, by replacing ϕ  into Eqs. (A.7) and (A.8) with the “emerging” solution , we can 

immediately obtain the corresponding “emerging” solutions  and , respectively . This is because the 

Harmony Conditions pertaining to the considered sub-system of Ordinality also contribute to the 

“emerging” of the explicit form of the “correlating factor” , with its pertaining Ordinality and time-

dependent cardinality; 
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ix) At this point the explicit time evolution of the proper space (3’) is perfectly known, obviously when the latter 

is considered as being preliminarily referred to a sub-system of Ordinality ; }2{}2/2{ ↑↑
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x) The “emerging” solution to the System described by three Generative Equations (1), (2), (3’), understood as 

one sole entity, can then be obtained by considering the Over-Ordinality ↑N pertaining to the Whole N-body 

System.  

Such a solution, when appropriately restructured in an exponential form, precisely assumes the structure of Eq. 

(4), in which any element  is characterized by the Ordinality .  ij
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